Astronomy Notes

© Mark Place, 2009-2010 www.LearnEarthScience.com

Objectives

- Identify the main classification of stars
 Use the HR Diagram in your ESRT to determine a star's temperature, luminosity in relation to our Sun
- Explain how stars generate their energy

What is a star?

 Large ball of gas held together by gravity that produces LARGE amounts of energy and shines

- Star is born as a cloud of gas and dust called a <u>nebula & then becomes a protostar</u>
- Our sun is the closest star and dominant gravitational force

How do stars generate their energy?

 Nuclear Fusioncombining nuclei of small elements to make nuclei of bigger elements + energy

Hydrogen (H) → Helium (He)

NUCICAT FUSION

Star Formation

Stars exist because of gravity
Two opposing forces in a star are
Gravity – contracts
Nuclear fusion – expands

Determine stage in star's life cycle

Gravity

Nuclear Fusion

What two Luminosity

Temperature

characteristics are used to

classify stars?

What is luminosity?

- Actual brightness of a star compared to the sun
- Do all stars have same luminosity?
 Does distance affect the luminosity of a star?

ESRT

Luminosity is the brightness of stars compared to the brightness of our Sun as seen from the same distance from the observer.

Hertzsprung-Russell Diagram aka Luminosity and Temperature of Stars Diagram – NOT A MAP **OIAGRAM IS A USEFUL WAY TO FOLLOW CHANGES THAT TAKE PLACE AS THE STARS LIVE OUT THEIR LIVES**

Diagram is made by plotting (graphing) each star's LUMINOSITY (brightness) and TEMPERATURE (as reflected by color) COMPARED TO THE SUN

How do stars compare in temperature?

- Hotter stars = blue
- Cooler stars = red

Blue Supergiants Red Giants Main Sequence What are the main classifications of stars? White Dwarfs

Red Dwarfs

All planets compared to Our Sun

What type of star is our Sun classified as?

<u>Main Sequence</u>

Circle where it is on the chart

Identify 2 Stars Hotter than our Sun

Identify 2 Stars Cooler than our Sun

 Identify 2 stars that are brighter than our sun

Orion

- What color are the stars in the constellation Orion?
 - Betelguese is **RED**
 - Rigel is **BLUE**.

Star Types & HR Diagram

- 90% of stars in the Main Sequence
 - Run upper left to lower right
 - Currently fusing H into He
 - Our sun!
- Above the main sequence

– <u>Giants (10-100X) and supergiants</u> (100x+)

- Below the main sequence
 - <u>Dwarfs</u>

HR Diagram Online

Life Cycle of Stars & the HR Diagram

Hertzsprung-Russell Diagram Star Evolution

- Giants (or red giants)
 Very luminous
 - Low Temperature
 - Late evolution of medium-sized main sequence stars when they greatly expand in size

Hertzsprung-Russell Diagram Star Evolution

- Super Giants
 Very few stars
- Late evolution of stars more massive than the sun.

 Usually explode in a supernova event

H-R Diagram – Star Evolution

White dwarfs

- •Small (approximate the size of Earth)
- •Hot
- Low in luminosity (due to their small size)
 <u>Planetary nebula</u>: The resulting glowing halo of gases that forms when a white dwarf's layers give off visible light
 Black dwarfs – dead stars

Life Cycle of Stars – Depends upon their original mass

- After they spend their life as main sequence star
- Sun size > expand to red giant in about 5 billion years > white dwarf > black dwarf
- Super giant > supernova >

very high mass – black hole high mass – neutron star

Evolution of a Star like our Sun